
Design Issue #8
User Operations

• Many possible operations

– Document operations: create, open, save, print a document

– Editing operations: select, copy, cut, paste, undo, redo

– Formatting operations: text formatting, character formatting

– Miscellaneous operations: context sensitive help

• Different interfaces for these operations

– Different Look-and-Feel

– Different Windowing Systems

– Different Access Points (menu, shortcut key, context menu)

• Independence from the UI

– UI is a possible trigger, but not the only one;

– What is done should not depend on the UI

Design Issue #8
User Operations

• Many possible operations

– Document operations: create, open, save, print a document

– Editing operations: select, copy, cut, paste, undo, redo

– Formatting operations: text formatting, character formatting

– Miscellaneous operations: context sensitive help

• Different interfaces for these operations

– Different Look-and-Feel

– Different Windowing Systems

– Different Access Points (menu, shortcut key, context menu)

• Independence from the UI

– UI is a possible trigger, but not the only one;

– What is done should not depend on the UI

Design Issue #8
User Operations

Design Issue #8
User Operations

Team exercise: Implement the collaborations behind

Character formatting dialog.

Design Issue #8
User Operations

Design Issue #8
User Operations

Just met the

Mediator pattern

http://www.oodesign.com/mediator-pattern.html

Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently.

Design Issue #8
User Operations

limits subclassing

decouples colleagues

simplifies object protocols

abstracts how objects cooperate

centralizes control

Applicability:

• a set of objects communicate in well-defined but complex

ways

• reusing an object is difficult because it refers to and

communicates with many other objects

• a behavior that's distributed between several classes should

be customizable without a lot of subclassing

Remarks:

- Omitting the abstract Mediator class.

- Colleague-Mediator communication.

Design Issue #8
User Operations

• The control tower at a controlled airport demonstrates this pattern very well.

• The pilots of the planes approaching or departing the terminal area

communicate with the tower rather than explicitly communicating with one

another.

• The constraints on who can take off or land are enforced by the tower.

• It is important to note that the tower does not control the whole flight.

• It exists only to enforce constraints in the terminal area.

Design Issue #8
User Operations

• Splitting the view

Design Issue #8
User Operations

Design Issue #8
User Operations

Team exercise: Open one document in 2 views and maintain

their state consistent

• Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and

updated automatically.

• Maintain consistency between dependent objects.

Design Issue #8
User Operations

Observer pattern

http://www.oodesign.com/observer-pattern.html

Design Issue #8
User Operations

Applicability:

• When an abstraction has two aspects, one dependent on the

other. Encapsulating these aspects in separate objects lets you

vary and reuse them independently.

• When a change to one object requires changing others, and you

don't know how many objects need to be changed.

• When an object should be able to notify other objects without

making assumptions about who these objects are. In other words,

you don't want these objects tightly coupled.

Design Issue #8
User Operations

Design Issue #8
User Operations

• Abstract coupling between Subject and Observer

• Support for broadcast communication

• Unexpected updates

• Who triggers the updates?

• Observing more than one subject

• Mapping objects to their observers

• Ensure self-consistency of subject state before

notifications

The auctioneer (subject) observes

new bids offered by bidders

(observers).

The new price is then broadcasted to

all bidders.

Design Issue #8
User Operations

Summary
Covered patterns

• Very good example: 21 out of 23 patterns (91%) described

in Design Patterns: Elements of Reusable Object-Oriented

Software were covered within this example:

• Structural: Composite, Flyweight, Proxy, Bridge, Adapter

• Behavioral: Strategy, State, Decorator, Template Method,

Command, Memento, Iterator, Visitor, Mediator, Observer,

Chain of Responsibility

• Creational: Singleton, Abstract Factory, Factory Method,

Prototype, Builder

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

