Design Issue #8
User Operations

- Many possible operations
— Document operations: create, open, save, print a document
— Editing operations: select, copy, cut, paste, undo, redo
— Formatting operations: text formatting, character formatting
— Miscellaneous operations: context sensitive help
- Different interfaces for these operations
— Different Look-and-Feel
— Different Windowing Systems
— Different Access Points (menu, shortcut key, context menu)
- Independence from the Ul
— Ul is a possible trigger, but not the only one;
— What is done should not depend on the Ul

Design Issue #8
User Operations

- Many possible operations
— Document operations: create, open, save, print a document
— Editing operations: select, copy, cut, paste, undo, redo
— Formatting operations: text formatting, character formatting
— Miscellaneous operations: context sensitive help
- Different interfaces for these operations
— Different Look-and-Feel
— Different Windowing Systems
— Different Access Points (menu, shortcut key, context menu)
- Independence from the U
— Ul is a possible trigger, but not the only one;
— What is done should not depend on the Ul

Design Issue #8
User Operations

Font | Character Spacing

Latin text font:

Font style:

Futura Bk

| Regular

Size:
(vl 18

[v]

All text

O~

Fant colar

Effects
[] strikethrough

[] superscript
|:| Subscript

[] Double Strikethrough

Underline style |(none] Underline color

[] small Caps
[] allcaps

Offset: [] Egualize Character Height

ok | | Cancel

I Design Issue #8

User Operations

Team exercise: Implement the collaborations behind
Character formatting dialog.

Design Issue #8
User Operations

a diractor

nFantDiaIngDiren‘:arﬂ“
l_ll L ._/'
[
aButton ————
director
anEntryField
Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField
F ShowDialog() .é
- WidgetChanged()
GetSelection()
SetText()
T ‘

Design Issue #8
User Operations

aClient

utton)

aButton

a diractor

Just met the

nFantDiaIngDiren‘:arﬂ“

T

i

direcior

/ Mediator pattern

anEntryField
Mediator Colleagues
aClient aFontDialogDirector alistBox anEntryField
F ShowDialog()

| _
- WidgetChanged()
GetSelection|)
SetText()

T ‘

http://www.oodesign.com/mediator-pattern.html

Design Issue #8
User Operations
Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to each
other explicitly, and it lets you vary their interaction independently.

mediator
Mediator }q Colleague
ConcreteMediator .‘ ConcreteColleaguei r‘ ConcreteColleague2

limits subclassing
simplifies object protocols

decouples colleagues abstracts how objects cooperate

centralizes control

Design Issue #8
User Operations

Applicability:

. a set of objects communicate in well-defined but complex
ways
reusing an object is difficult because it refers to and
communicates with many other objects
a behavior that's distributed between several classes should
be customizable without a lot of subclassing

Remarks:
- Omitting the abstract Mediator class.
- Colleague-Mediator communication.

Design Issue #8
User Operations

ATC Mediator

\

\3
7N\

Flight 747 D

Fllght 1011 Flight 112

ﬂ

« The control tower at a controlled airport demonstrates this pattern very well.

« The pilots of the planes approaching or departing the terminal area
communicate with the tower rather than explicitly communicating with one
another.

« The constraints on who can take off or land are enforced by the tower.

» |tis important to note that the tower does not control the whole flight.

|t exists only to enforce constraints in the terminal area.

Design Issue #8
User Operations

« Splitting the view

2 1 gﬂ 1 2 3 4 5 [7 8 9 10 11 12 13 14 15 o
LIUDD il LUTURS. 1L 12 QU udiisiQimminy rai il nigavuve auveiuasiigiiL neaaayso.

The SEED platform is 100% Web-based] |~ - Jooth for management and playing the content. It
allows content managers to easily connect to public sector information available in RSS feeds, or in
well-known social media environment, such as Twitter, Facebook, YouTube or Vimeg. The content is
structured in playlists, so called carousels, which are playable by any standard Web browser on a
heterogeneous collection of digital devices, from standard PCs or digital kiosks to Smart TVs and
MiniAndroid PCs. Thus, it is not required to port, install or maintain additional piece of software for
these platforms, an Internet browser is all that is required to interact with SEED platform. The solution
is delivered using Software as a Service model, a well-established approach in cloud computing
environment, SEED customers (public or private organizations) being freed from the burden of
acquiring, installing, configuring and maintaining expensive IT&C infrastructure. The SEED platform
has been tested and validated by public authorities and higher education institutions through seven
pilots, running in six European countries, for a year until now.

The paper presents the SEED platform, technicalities behind it, main concepts that it uses and also
the initial findings originated from the evaluation focus group’s feedback gathered by pilots, using both
quantitative and qualitative methods.

Keywords: public service efficiency and effectiveness, take-up of e-Government service, Web 2.0 in
e-Government, e-Participation, cloud computing, public service advertising, public sector information

Abstract: How can you reuse existing local/regional/national/European stocks of public sector
information (PSI) to boost citizen-centric e-Government? How can you save costs on e-Governance
deployments by reusing existing infrastructure of public service advertising (PSA) networks? How can
recent technological developments in cloud computing remove the burden of complex IT&C setups
out of your organization? The aim of SEED project is to boost “citizen-centric” e-Government services,
to reuse as much as possible the European, national, regional and local stocks of PSI and to leverage
saving costs of e-Government and e-Govemnance deployments through a cloud computing approach
and a very cheap network of interactive PSA nodes. SEED reuses existing PSI making mash-ups of
e-Government contents for raising awareness of citizens about e-Government services available
across all Europe. It is about transforming PSI in interactive advertisement messages.

The SEED platform is 100% Web-based, both for management and playing the content. It
allows content managers to easily connect o public sector information available in RSS feeds, or in

wall lnruwm encial madia anvirnnmant enrch ac Twittar Carohnanlk YanTuha ar Viman Tha rantant ic

I Design Issue #8

User Operations

Team exercise: Open one document in 2 views and maintain
their state consistent

Design Issue #8
User Operations

Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and

updated automatically.

Maintain consistency between dependent objects.

compaosition
(=]

Observer pattern

g‘, 1 2 3 4 5 6 7 8 E 10 1 12 13 14 15 A

ILIUDD @il LUIUPE. 111D auuul uansiviniinig ©.a1 i i auiuve auvel issinig L inigssayes.

The SEED platform is 100% Web-based[71 |both for management and playing the content. It
allows content managers to easily connect to public sector information available in RSS feeds, or in
well-known social media environment, such as Twitter, Facebook, YouTube or Vimeo. The content is
structured in playlists, so called carousels, which are playable by any standard Web browser on a
heterogeneous collection of digital devices, from standard PCs or digital kiosks to Smart TVs and
MiniAndroid PCs. Thus, it is not required to port, install or maintain additional piece of software for
these platforms, an Internet browser is all that is required to interact with SEED platform. The solution
is delivered using Software as a Service model, a well-established approach in cloud computing
environment, SEED customers (public or private organizations) being freed from the burden of
acquiring, installing, configuring and maintaining expensive IT&C infrastructure. The SEED platform
has been tested and validated by public authorities and higher education institutions through seven
pilots, running in six European countries, for a year until now.

The paper presents the SEED platform, technicalities behind it, main concepts that it uses and also
the initial findings originated from the evaluation focus group’s feedback gathered by pilots, using both
quantitative and qualitative methods.

Keywords: public service efficiency and effectiveness, take-up of e-Government service, Web 2.0 in
e-Government, e-Participation, cloud computing, public service advertising, public sector information

g 1 2 3 4 5 6 7 8 E 10 1 12 13 14 15 A

Abstract: How can you reuse existing localiregional/national/European stocks of public sector
information (PSI) to boost citizen-centric e-Government? How can you save costs on e-Governance
deployments by reusing existing infrastructure of public service advertising (PSA) networks? How can
recent technological developments in cloud computing remove the burden of complex IT&C setups
out of your organization? The aim of SEED project is to boost “citizen-centric” e-Government services,
to reuse as much as possible the European, national, regional and local stocks of PSI and to leverage
saving costs of e-Government and e-Governance deployments through a cloud computing approach
and a very cheap network of interactive PSA nodes. SEED reuses existing PS| making mash-ups of
e-Government contents for raising awareness of citizens about e-Government services available
across all Europe. It is about transforming PSI in interactive advertisement messages.

The SEED platform is 100% Web-based, both for management and playing the content. It
allows content managers to easily connect 10 public sector information available in RSS feeds, or in

wall bnanamn encial madia anvirnnmant ench ae Twittar Carahnnl VanTuha ar Vfiman Tha ecantant ic

http://www.oodesign.com/observer-pattern.html

Design Issue #8
User Operations

Subject

pbservers

Attach(Observer)
Detach(Observer)

ConcreteSubject

GetState() ©---
SetState()

subjectSiate

for ali 0 in observers |
- | o=->Updatel)

subject

wa Observer

Update()

A

ConcreteObserver

| rewm subiectStauﬁ

Update() b

phserverState

|| observarState =
subject->GetState()

Design Issue #8
User Operations

Applicability:

« When an abstraction has two aspects, one dependent on the
other. Encapsulating these aspects in separate objects lets you
vary and reuse them independently.

 When a change to one object requires changing others, and you
don't know how many objects need to be changed.

« When an object should be able to notify other objects without
making assumptions about who these objects are. In other words,
you don't want these objects tightly coupled.

Design Issue #8
User Operations

« Abstract coupling between Subject and Observer
e Support for broadcast communication

« Unexpected updates

« Who triggers the updates?

« Observing more than one subject

« Mapping objects to their observers

« Ensure self-consistency of subject state before
notifications

Design Issue #8
User Operations

Auctioneer (Subject)

The auctioneer (subject) observes
new bids offered by bidders
(observers).

2. Broadcast New High Bid

The new price is then broadcasted to
all bidders.

\1/
0
g.

Bidders (Observers)

Summary
Covered patterns

- Very good example: 21 out of 23 patterns (91%) described
In Design Patterns: Elements of Reusable Object-Oriented
Software were covered within this example:

- Structural: Composite, Flyweight, Proxy, Bridge, Adapter

- Behavioral: Strategy, State, Decorator, Template Method,
Command, Memento, Iterator, Visitor, Mediator, Observer,
Chain of Responsibility

- Creational: Singleton, Abstract Factory, Factory Method,
Prototype, Builder

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

