
Designing a Simple Compiler

INTERPRETER Design Pattern
- Behavioral

Motivation

• „Given a language, define a representation for its

grammar along with an interpreter that uses the

representation to interpret sentences in the

language.”

[GoF,243]

Basic Idea

• A class for each symbol, terminal, or non-

terminal.

• The syntax tree of a sentence in the language is an

instance of the composite pattern and is used to

evaluate (interpret) the sentence.

Applicability

• Simple grammar

• Efficiency is not a critical concern

- Most efficient way first translating the parse trees into

another form [also interpreter pattern] and then

interpreting it

Structure

e.g. LiteralExpression e.g. SequenceExpression

Related Patterns

• Composite

- The AST is an instance of the Composite Pattern

• Flyweight

- How to share terminal symbols within the AST

• Iterator

- For traversing the structure

• Visitor

- For maintaining the behavoir in each node of the AST in one

class

Implementation issues

• Creating the AbstractSyntaxTree:

- Creating the AST is not in the scope of Interpreter pattern

• Defining the Interpret operation:

- If defining new operations is very common, it’s better to use

the Visitor pattern.

• Sharing terminal symbols with Flyweight:

- Grammars whose sentences contain many occurrences of a

terminal symbol might benefit from sharing a single copy of

that symbol.

Consequences

• Easy to change and extend the grammar using

inheritance.

• Implementing is easy too, since classes defining

the nodes in the AST have similar implementation.

• Easily to add new ways to interpret expressions,

by defining new operations in the expression

classes. [Visitor]

• Complex grammars are hard to mantain !

Conclusions

• The Interpreter pattern has a limited area where it

can be applied:

- For parsing light expressions defined in simple grammars

• Interpreter Pattern is useful in terms of formal

grammars but in this area there are better

solutions, this is why this pattern is not so

frequently used.

FAÇADE
Structural Pattern

12

Intent

Provides a unified interface to a set of interfaces of a subsystem.

Façade defines a higher-level interface that makes the subsystem easier to use.

This can be used to simplify a number of complicated object interactions into a

single interface.

Motivation

Applicability

• you want to provide a simple interface to a complex subsystem

• there are many dependencies between clients and the implementation

classes of an abstraction.

• you want to layer your subsystems.

Structure

Consequences

Benefits of Façade:

1. It shields clients from subsystem components, thereby reducing the number

of objects that clients deal with and making the subsystem easier to use.

2. It promotes weak coupling between the subsystem and its clients.

3. It doesn't prevent applications from using subsystem classes if they need

to. Thus you can choose between ease of use and generality.

Implementation

1. Reducing client-subsystem coupling.

2. Public versus private subsystem classes.

Examples

The Façade defines a unified, higher level interface to a subsystem that makes it

easier to use. Clients encounter a Façade when compiling the source code. The

Compiler service acts as a Façade, providing an interface to the complex

orchestration of different objects working together to achieve a compilation task.

Sample Code

public class Cube {

public int doTheCube(int x) {

return x * x * x;

}

}

public class DoubleCube {

public int doDoubleCube(Cube cube, int x) {

return 2 * cube.doTheCube(x);

}

}

public class CubeAndDoubleCube {

public int doCubeAndDoubleCube(Cube cube,

DoubleCube doubleCube, int x) {

return cube.doTheCube(x) *

doubleCube.doDoubleCube(cube, x);

}

}

public class Façade {

public int cubeX(int x) {

Cube cube = new Cube();

return cube.doTheCube(x);

}

public int cubeXTimes2(int x) {

Cube cube = new Cube();

DoubleCube doubleCube= new DoubleCube();

return doubleCube.doDoubleCube(cube, x);

}

public int cubeAndDoubleCubeOfx(int x) {

Cube cube = new Cube();

DoubleCube doubleCube= new DoubleCube();

CubeAndDoubleCube cubeAndDoubleCube= new CubeAndDoubleCube();

return cubeAndDoubleCube.doCubeAndDoubleCube(cube, doubleCube, x);

}

}

public class FaçadeDemo {

public static void main(String[] args) {

Façade Façade = new Façade();

int x = 3;

System.out.println("Cube of " + x + " is: " + Façade.cubeX(x));

System.out.println("Cube of " + x + " multiply with 2 is: " +

Façade.cubeXTimes2(x));

System.out.println("Cube X Double cube of " + x + " is: " +

Façade.cubeAndDoubleCubeOfx(x));

}

}

Related Patterns

Abstract Factory can be used with Façade to provide an interface for creating

subsystem objects in a subsystem-independent way. Abstract Factory can also be

used as an alternative to Façade to hide platform-specific classes.

Mediator is similar to Façade in that it abstracts functionality of existing classes.

However, Mediator's purpose is to abstract arbitrary communication between

colleague objects, often centralizing functionality that doesn't belong in any one of

them.

In contrast, a Façade merely abstracts the interface to subsystem objects to

make them easier to use; it doesn't define new functionality, and subsystem

classes don't know about it.

Usually only one Façade object is required. Thus Façade objects are often

Singletons.

