
Designing A Payroll System

A Solution, NOT THE Solution

Daniel POP, Ph.D

2

General Description

• The system consists of a database with all company’s

employees, and their associated data, such as time cards.

• The system must pay all employees the correct amount, on

time, by the method that they specify.

• Also, various deductions must be taken from their pay.

3

General Description
Specifications / requirements

• Some employees work by the hour. They are paid an hourly rate that is one of
the fields in their employee record. They submit daily time cards that record the
date and the number of hours worked. If they work more than 8 hours per day,
they are paid 1.5 times their normal rate for those extra hours. They are paid
every Friday.

• Some employees are paid a flat salary. They are paid on the last working day of
the month. Their monthly salary is one of the fields in their employee record.

• Some of the salaried employees are also paid a commission based on their
sales. They submit sales receipts that record the date and the amount of the
sale. Their commission rate is a field in their employee record. They are paid
every other Friday.

• Employees can select their method of payment. They may have their paychecks
mailed to the postal address of their choice, have their paychecks held by the
paymaster for pickup, or request that their paychecks be directly deposited into
the bank account of their choice.

• Some dues will be deducted from employee’s pay amount, such as taxes, health
contribution, union etc. These charges must be deducted from the appropriate
employee’s next pay amount. They can be flat rates or percentages applied to
gross pay amount.

• The payroll application will run once each working day and pay the appropriate
employees on that day. The system will be told what date the employees are to
be paid to, so it will generate payments for records from the last time the
employee was paid up to the specified date.

4

Analysis by Use Case

• It is the system’s behavior what we are
creating/modelling, not the system’s data; system’s data is
a consequence

• Use Cases (UC) are ways to capture system’s
behavior; they are similar to user stories (in agile
methodologies)

• For our system, the UCs, what customer wants, are:

1. Add a new employee

2. Delete an employee

3. Post a time card

4. Post a sales receipt

5. Post a charge

6. Change employee details (e.g., hourly rate, dues rate, etc.)

7. Run the payroll for today

5

UC #1: Add a New Employee
Description

• A new employee is added by the receipt of an AddEmp
command. This command contains the employee’s name,
address, and assigned employee number. The command
has three forms:

• AddEmp <EmpID> "<name>" "<address>" H <hrly-rate>

• AddEmp <EmpID> "<name>" "<address>" S <mtly-slry>

• AddEmp <EmpID> "<name>" "<address>" C <mtly-slry> <com-

rate>

• The employee record is created with its fields assigned

appropriately

• If the command structure is inappropriate, it is printed out

an error message, and no action is taken.

6

UC #1: Add a New Employee
Inferred model

• Use Command pattern to model each possible type of
command

• Enforces SRP

http://www.oodesign.com/command-pattern.html

7

UC #1: Add a New Employee
Inferred model

• Q: What do the three commands create?

• A: They create three kinds of employee objects

8

UC #2: Delete an Existing Employee
Description

• Employees are deleted when a DelEmp command is
received. The form of this command is as follows :

• DelEmp <EmpID>

• When this command is received, the appropriate

employee record is deleted.

• If the <EmpID> field is not structured correctly or does not

refer to a valid employee record, the command is printed

with an error message, and no other action is taken.

9

UC #2: Delete an Existing Employee
Inferred model

10

UC #3: Post a Time Card
Description

• On receipt of a TimeCard command, the system will create
a time card record and associate it with the appropriate
employee record:

• PostTimeCard <empid> <date> <hours>

• If the <EmpID> field is not structured correctly or does not

refer to a valid employee record, the system will print an

appropriate error message and take no further action.

11

UC #3: Post a Time Card
Inferred model

12

UC #4: Post a Sales Receipt
Description

• On receipt of the SalesReceipt command, the system will
create a new salesreceipt record and associate it with the
appropriate commissioned employee:

• PostSalesReceipt <empid> <date> <amount>

• If the <EmpID> field is not structured correctly or does not

refer to a valid employee record, the system will print an

appropriate error message and take no further action.

13

UC #4: Post a Sales Receipt
Inferred model

14

UC #5: Post a Charge
Description

• Charge may be pension contribution, health system
contribution, union contribution etc.

• On receipt of this command, the system will create a
charge record and associate it with the appropriate
employee:

• AddCharge <empID> <chargeID> <amount>

• AddCharge <empID> <chargeID> <percentage>

• If the command is not well formed or if the <empID> does

not refer to an existing employee, the command is printed

with an appropriate error message.

15

UC #5: Post a Charge
Inferred model

16

UC #6: Change Employee Details
Description

• Upon receipt of this command, the system will alter one of
the details of the appropriate employee record. There are
several possible variations to this command:

• ChgEmp <EmpID> Name <name> - Change employee name

• ChgEmp <EmpID> Address <address> - Change employee address

• ChgEmp <EmpID> Hourly <hourlyRate> - Change to hourly

• ChgEmp <EmpID> Salaried <salary> - Change to salaried

• ChgEmp <EmpID> Commissioned <salary> <rate> - Change to

commissioned

• ChgEmp <EmpID> Hold - Hold paycheck

• ChgEmp <EmpID> Direct <bank> <account> - Direct deposit

• ChgEmp <EmpID> Mail <address> - Mail paycheck

• ChgEmp <EmpID> Charge <chargeID> <amount> - Change a fixed

charge

• ChgEmp <EmpID> Charge <chargeID> <perc> - Change a

percentage charge

• If the structure of the command is improper, <EmpID> does not refer

to a real employee, the system will print a suitable error and take no

further action.

17

UC #6: Change Employee Details
Inferred model

Lot of information for one UC:

1. The fact that the type of employee is changeable implies
that the diagram inferred from UC #1 is invalid; the
inheritance is not appropriate => need to use object
composition instead; Strategy pattern is a good
candidate for pay computation

2. The same approach can be used for method of payment
(it is also changeable)

• All these patterns enforces OCP principle in our design

http://www.oodesign.com/strategy-pattern.html

18

UC #6: Change Employee Details
Inferred model

19

UC #7: Run The Payroll For Today
Description

• On receipt of the payday command, the system finds all
those employees that should be paid on the specified
date. The system then determines how much they are
owed and pays them according to their selected payment
method. An audit-trail report is printed showing the action
taken for each employee:

• Payday <date>

20

UC #7: Run The Payroll For Today
Calculating the pay

• First, how does the Employee object know how to
calculate its pay?

21

UC #7: Run The Payroll For Today
Calculating net / gross salaries

NetSalary = GrossSalary – Deductions

Deductions = Sum of all charges

22

UC #7: Run The Payroll For Today
Calculating gross salary

• The system will sum

up an Hourly

employee’s time cards

and multiply by the

hourly rate.

• Similarly, the system

will sum up a

Commissioned

employee’s sales

receipts, multiply by

the commission rate,

and add the base

salary.

• For Salaried

employee, the system

will pay the fixed

monthly amount

23

UC #7: Run The Payroll For Today
Digging ‘hidden’ abstractions

• Some abstractions are easy to find; for example, from
“Some employees work by the hour” and “Some
employees are paid a flat salary” we derived the
PaymentClassification abstraction.

• Some others are “hidden”; for example, from “They are
paid every Friday,” “They are paid on the last working
day of the month,”, or “They are paid every other
Friday.” we may derive the notion of Schedule of
Payment, that is not specifically mentioned in
requirement!

24

UC #7: Run The Payroll For Today
Dealing with payment schedule

• We can wire the payment schedule (= whether a day is a
pay day or not) into PaymentClassification classes

• …but this is will tight couple 2 unrelated concepts:

– Salary computation algorithm

– Payment schedule algorithm

breaking down several OOD principles (SRP, OCP, DRY).

25

UC #7: Run The Payroll For Today
Dealing with payment schedule, a flexible approach

• Instead, we’ll do like this

• What pattern did we use?

• Easily to combine
any payment
schedule with any
salary
computation
algorithm

• Independent
evolution of the 2
concepts (add,
change, remove)

• Comply with OOD
principles

26

Summary
Final Design

• Command

• Strategy

Note: Commands hierarchy is
not depicted here

27

Summary
Java Sources

• This example has been (partially) implemented in
Java

• Download the Java sources and binaries from the
following address:

http://web.info.uvt.ro/~danielpop/dp/payroll.zip

• To run the example, extract the zip file and
execute run.bat file

http://web.info.uvt.ro/~danielpop/dp/payroll.zip

28

Overreliance on tools and

procedures and underreliance

on intelligence and experience

are recipes for disaster.

