
1

Design Issue #3
Spell Check and Hyphenation

• Remember our (partial) class diagram



2

Design Issue #3
Spell Check and Hyphenation

• Remember our (partial) object structure



3

Design Issue #3
Spell Check and Hyphenation

• Similar constraints to formatting

• Need to support multiple algorithms

• We may want to add

– search

– grammar check

– word count

– Thesaurus

– Text to speech

• This is too much for any single pattern… 

• There are actually two parts

– (1) Access the information

– (2) Do the analysis



4

Design Issue #3
Spell Check and Hyphenation – Accessing the Information

• We can encapsulate access and traversal using the Iterator

pattern

Reasons for 

separation:

- Don’t ‘pollute’ 

Gyph interface 

with traversal 

operations

- Multiple traversal 

strategies

- Support more than 

one traversal at a 

time

http://www.oodesign.com/iterator-pattern.html


5

Design Issue #3
Spell Check and Hyphenation – Accessing the Information

• Sample code illustrating the usage of an iterator to do our 

analysis

Glyph* root;

Iterator* i = root->createPreOrderIterator(); 

for (i->First(); !i->IsDone(); i->Next()) 

{ 

Glyph* current = i->GetCurrent(); 

// do some analysis 

}

• Examples of iterators: an int* is an iterator for int[] type.



6

Design Issue #3
Spell Check and Hyphenation – Accessing the Information

• Iterator pattern

• Types of iterators

– External iterator vs Internal iterator

– Robust iterator

– Null iterator

– Polymorphic iterator

http://www.oodesign.com/iterator-pattern.html


7

Design Issue #3
Spell Check and Hyphenation – The Analysis

• We don’t want our analysis in our iterator

– Iterators can be reused

• We don’t want analysis in our Glyph class

– Every time we add a new type of analysis… we have to 

change our glyph classes

• Therefore

– Analysis gets its own class(es)

– It will use the appropriate iterator

– Analyzer class may need to accumulate data during analysis 

process



8

Team exercise: Implement word counting

Design Issue #3
Spell Check and Hyphenation – The Analysis



9

Design Issue #3
Spell Check and Hyphenation – The Analysis
class SpellingChecker 

{

public: 

void Check(Glyph* glyph);

};

void SpellingChecker::Check (Glyph* glyph) 

{ 

Character* c; 

Row* r; 

Image* i; 

if (c = dynamic_cast<Character*>(glyph)) 

{ 

// analyze the character 

} 

else if (r = dynamic_cast<Row*>(glyph)) 

{ 

// prepare to analyze r's children 

} 

else if (i = dynamic_cast<Image*>(glyph)) 

{ 

// do nothing 

} 

}

Glyph* root;

SpellingChecker checker;

Iterator* i = root->createPreOrderIterator(); 

for (i->First();!i->IsDone(); i->Next()) 

{ 

Glyph* current = i->GetCurrent(); 

checker.Check(current);

}

This is a start… but not 

what we want!



10

Design Issue #3
Spell Check and Hyphenation – The Analysis

• Why don’t we want this?

– Difficult to extend: each time a new Glyph is introduced, one 

needs to change SpellingCheck::Check

– Error prone: missing one type of Glyph

– Violates OCP and SRP principles

– Usually, the usage of dynamic_cast denotes poor OO 

modeling

• We want a better solution…



11

Design Issue #3
Spell Check and Hyphenation – The Analysis

• …we will use the Visitor pattern

class Visitor 

{ 

public: 

virtual void visitCharacter(Character*) { } 

virtual void visitRow(Row*) { } 

virtual void visitImage(Image*) { } 

// ... and so forth 

}; 

• Then, we specialize this superclass into

– SpellCheckingVisitor

– HyphenationVisitor

– and so on…

• There is a little impact on Glyph hierarchy that need to be changed in order to 
accept visitors:

– within Glyph we define an abstract operation 

void accept(Visitor& visitor)

– Character class implements it by calling visitor.visitCharacter(this)

– Row class implements it by calling visitor.visitRow(this)

http://www.oodesign.com/visitor-pattern.html


12

Design Issue #3
Spell Check and Hyphenation – The Analysis



13

Team exercise: Re-implement word counting using Visitor 

pattern

Design Issue #3
Spell Check and Hyphenation – The Analysis



14

Design Issue #3
Spell Check and Hyphenation – The Analysis
Class Glyph {

// other declarations. . . 

virtual void accept(Visitor* ) = 0;

};

class Character : public Glyph {

// other declarations. . .

void accept(Visitor* v) {

v->visitCharacter(this);

}

};

class Row : public Glyph {

// other declarations. . .

void accept(Visitor* v) {

v->visitRow(this);

}

};

class Image : public Glyph {

// other declarations. . .

void accept(Visitor* v) {

v->visitImage(this);

}

};

Glyph* root;

SpellCheckerVisitor checker;

Iterator* i = root->createPreOrderIterator(); 

for (i->First();!i->IsDone(); i->Next()) 

{ 

Glyph* current = i->GetCurrent(); 

current->accept(&checker);

}

This is a what we need!

class Visitor { 

public: 

virtual void visitCharacter(Character*) { 

} 

virtual void visitRow(Row*) { 

} 

virtual void visitImage(Image*) { 

} 

};

class SpellCheckerVisitor : public Visitor{

public: 

virtual void visitCharacter(Character*) { 

// analyze the character 

} 

virtual void visitRow(Row*) { 

// prepare to analyze r's children 

} 

};



Design Issue #4
Document persistence

• How to implement Open / Save document operations

so that:

15

1. New formats

(PDF, XML,

RTF etc.) are

easily

supported

2. Decoupling

from

document

structure



Design Issue #4
Document persistence

• Need different approaches for Open vs. Save because

the context is completely different:

– Save: the document fully exist in memory and we need to

implement an operation that process it (similar to Spell Check,

or Hyphenation)

– Open: the document DOES NOT exist in memory and need to

be constructed from a stream of bytes

16



17

Team exercise: Design Save and Open operations

Design Issue #4
Document persistence



Design Issue #4
Document persistence : Save

• Key patterns (similar to Spell Check and alike) are:

– Iterator

– Visitor

18

class Visitor { 

public: 

virtual void visitCharacter(Character*) { 

} 

virtual void visitRow(Row*) { 

} 

virtual void visitImage(Image*) { 

} 

};

class XMLSaveVisitor : public Visitor{

File* fileXML;

public: 

XMLSaveVisitor(const char* fileName);

virtual void visitCharacter(Character*);

virtual void visitRow(Row*);

virtual void visitImage(Image*)

virtual ~XMLSaveVisitor();

};

XMLSaveVisitor::XMLSaveVisitor(const char* filename)

{

fileXML = new File(filename, “rw”);

}

Void XMLSaveVisitor::visitCharacter(Character* c)

{

fileXML->write(“<char>”+c+”</char>”);

}

Void XMLSaveVisitor::visitImage(Image* img)

{

fileXML->write(“<image width=”+img->getWidth()+

“ height=“+img->getHeight());

fileXML->write(“ url=“+img->getURL());

fileXML->write(”></image>”);

}



Design Issue #4
Document persistence : Open

19

• It’s different (no object yet), what we need is:

– To be able to build step-by-step a complex structure of objects;

– The process of constructing the object(s) should be a generic

one, easy to adapt to different source streams



Design Issue #4
Document persistence : Open

20

• It’s different (no object yet), what we need is:

– To be able to build step-by-step a complex structure of objects;

– The process of constructing the object(s) should be a generic

one, easy to adapt to different source streams

• This is exactly what BUILDER pattern does!



• Applicability of Builder pattern:

– Decoupling the algorithm to create a complex object from its

parts and the relationships between them

– The building process must allow various representations for

the object under construction

– Avoid proliferation of constructors; enhance code clarity

21

Design Issue #4
Document persistence : Builder



Design Issue #4
Document persistence : Open

• Builder gives us a hand:

– OpenCommand class acts as Director

– The “products” are represented by the different Glyph types

(Image, Character, Row etc)

– OpenFileBuilder is the Builder interface in charge with handling

different types of glyphs; it has a constructXXX member

function for each Glyph type

– For each import format supported (such as XML, PDF, RTF

etc.) a new ConcreteBuilder is implemented

22



23

// Paste this in yUML.me
[OpenCommand|+execute]<>-builder->[OpenFileBuilder]
[OpenFileBuilder|+constructDocument;+constructCharacter;+constructImage;+constructRow]
[OpenFileBuilder]^[XMLBuilder]
[OpenFileBuilder]^[PDFBuilder]
[XMLBuilder]creates -.->[Glyph]

Design Issue #4
Document persistence : Open



Design Issue #4
Document persistence : Open

24

Void OpenCommand::execute() {

// pop-up a window to select the file

// if no file selected, or format incompatible, 

// exit

OpenFileBuilder* builder =         

OpenFileBuilderFactory.getBuilder(filename);

Glyph* document = builder->constructDocument();

// register document in the opened documents 

// collection

}

XMLBuilder::XMLBuilder(const char* filename) {

XMLFile* file = new XMLFile(filename, “r”);

}

Glyph* XMLBuilder::constructDocument() {

XMLElement e;

Glyph* g = NULL, doc = NULL;

file->first();

while(!file->isDone()) {

e = file->currentItem();

switch(e.getType()) {

case DOCUMENT: 

doc = new Document();

break;

case IMAGE: 

g = constructImage(e);

break;

case CHARACTER: 

g = contructCharacter(e); 

break;

// etc.

}

if(g!=NULL && doc!=NULL)

doc->insertGlyph(g);

file->next();

}

}

Image* XMLBuilder::constructImage(XMLElement& e) {

Image* img = new Image(e.getAttribute(“width”),

e.getAttribute(“height”));

img->loadFile(e.getAttribute(“url”));

return img;

}

What other pattern is 

used in this code snippet?



Examples: let’s build a house…

25

Design Issue #4
Document persistence : Builder



• Builder may use other creational patterns to build its

parts;

• It is common that builders itself are implemented as

Singleton

• While Builder constructs a single object in a step-by-

step process, the Abstract Factory constructs a family

of related objects

• The complex object built using Builder is often

represented using Composite design pattern.

27

Design Issue #4
Document persistence : Builder



• Allows the variation of internal representation of

a product

• Decouples the code for representing the object

and the code to construct it

• Employs good control and customization of

• Easy to add new ConcreteBuilders.

28

Design Issue #4
Document persistence : Builder


