Design Issue #5
Embellishing the user interface
- Two ornaments (embellishments):

— a border around the text editing area
— scroll bars

T+

Somme applcalors. ek beeshl
Irzr pging abpcis v rooel sy
negacl ol thar lusehansiiy Bl

1 nares desgn sageaash weald ba
prskidilimk) aapanaie

Far nearibs, aeal dosusant ai—
mers mepjubares e el bor sl
1 ared schirg faciss G s
anigrl, Howssss, Ty riarabhy
s ahart of parg cbjesh
prasanl agsh characks and
graphical samanl m e des umsnl
Dareg 30 wiukd prooess Sanbbly
ul lhe lreal Bl r s
appbsasan, Tael aml graphics
aoishd ba ireaied urikeemly wik

) N —

I Design Issue #5

Embellishing the user interface

Team exercise:
- One approach: using inheritance
- Second approach: using object composition

Design Issue #5
Embellishing the User Interface

- Basically, we want to extend the code to provide a
Transparent Enclosure

— Transparent in that the page itself does not know anything
about the changes — it behaves the same

- How should we do this?
— We could use Inheritance, how would that look?

— We have a Composition class...
- To add a Border we add a BorderedComposition class
- To add a Scroll bar we add a ScrollableComposition class
- What about both? BorderedScrollableComposition class?

- How could we do it with object composition instead?
— What object “has” what object?
- How do we make it extensible?

Design Issue #5
Embellishing the User Interface

- Meet the Decorator pattern

/[Delegate it
void MonoGlyph::Draw (Window* w)

——=] Giypn {
DeawiWindow}
%3 __component->Draw(w);

——< MonoGlyph }
componant Oramdom
A I/ Do it
Border | s.:m..al void Border::Draw (Window* w)
Draw(Window) Draw{Window {
e —— ___ MonoGlyph::Draw(w);
DrawBorder(w);
}

Multiple decorations (ornaments)....

-,

|/_ aBorderDecorator —_— -,
aScroliDecorator

I_cumpunent - aTextView -W
componani 7 _)

http://www.oodesign.com/decorator-pattern.html

Design Issue #5
Embellishing the User Interface

- To conclude Design Issue #5:

— Adding additional functionalities (embellishments, ornaments)
to a class can be either achieved either via inheritance (soon
you will end-up with an unmanageable hierarchy) or, better,
using object composition with the help of patterns like
Decorator or Chain of Responsibility (for Chain of
Responsibility see also Design Issue #8)

http://www.oodesign.com/chain-of-responsibility-pattern.html

