Design Issue #5
Embellishing the user interface
- Two ornaments (embellishments):

— a border around the text editing area
— scroll bars
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I Design Issue #5

Embellishing the user interface

Team exercise:
- One approach: using inheritance
- Second approach: using object composition




Design Issue #5
Embellishing the User Interface

- Basically, we want to extend the code to provide a
Transparent Enclosure

— Transparent in that the page itself does not know anything
about the changes — it behaves the same

- How should we do this?
— We could use Inheritance, how would that look?

— We have a Composition class...
- To add a Border we add a BorderedComposition class
- To add a Scroll bar we add a ScrollableComposition class
- What about both? BorderedScrollableComposition class?

- How could we do it with object composition instead?
— What object “has” what object?
- How do we make it extensible?
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- Meet the Decorator pattern

/[ Delegate it
void MonoGlyph::Draw (Window* w)
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Multiple decorations (ornaments)....
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http://www.oodesign.com/decorator-pattern.html

Design Issue #5
Embellishing the User Interface

- To conclude Design Issue #5:

— Adding additional functionalities (embellishments, ornaments)
to a class can be either achieved either via inheritance (soon
you will end-up with an unmanageable hierarchy) or, better,
using object composition with the help of patterns like
Decorator or Chain of Responsibility (for Chain of
Responsibility see also Design Issue #8)



http://www.oodesign.com/chain-of-responsibility-pattern.html

