
1

Design Issue #5
Embellishing the user interface

• Two ornaments (embellishments):

– a border around the text editing area

– scroll bars

2

Design Issue #5
Embellishing the user interface

Team exercise:

• One approach: using inheritance

• Second approach: using object composition

3

Design Issue #5
Embellishing the User Interface

• Basically, we want to extend the code to provide a

Transparent Enclosure

– Transparent in that the page itself does not know anything

about the changes – it behaves the same

• How should we do this?

– We could use Inheritance, how would that look?

– We have a Composition class…

• To add a Border we add a BorderedComposition class

• To add a Scroll bar we add a ScrollableComposition class

• What about both? BorderedScrollableComposition class?

• How could we do it with object composition instead?

– What object “has” what object?

– How do we make it extensible?

4

Design Issue #5
Embellishing the User Interface

• Meet the Decorator pattern
// Delegate it

void MonoGlyph::Draw (Window* w)

{

_component->Draw(w);

}

// Do it

void Border::Draw (Window* w)

{

MonoGlyph::Draw(w);

DrawBorder(w);

}
Multiple decorations (ornaments)….

http://www.oodesign.com/decorator-pattern.html

5

Design Issue #5
Embellishing the User Interface

• To conclude Design Issue #5:

– Adding additional functionalities (embellishments, ornaments)

to a class can be either achieved either via inheritance (soon

you will end-up with an unmanageable hierarchy) or, better,

using object composition with the help of patterns like

Decorator or Chain of Responsibility (for Chain of

Responsibility see also Design Issue #8)

http://www.oodesign.com/chain-of-responsibility-pattern.html

