
1

Design Issue #7
Supporting Multiple Window Systems

• What about the Windowing System itself?

• The APIs differ… not just the visual elements

– Can we use Abstract Factory?

• Not easily… vendors already define class hierarchies

• Need to align vendor-specific libraries to our ‘product’ abstractions

– How do we make classes from different hierarchies comply to 

the same abstract type?



2

Design Issue #7
Encapsulating Implementation Dependencies

Responsibility Operations

window management virtual void Redraw()

virtual void Raise()

virtual void Lower()

virtual void Maximize()

virtual void Minimize()

graphics virtual void DrawLine()

virutal void DrawRect()

virtual void DrawPolygon()

Virtual void DrawText()

What functionalities will the abstract Window support?

1.Intersection of functionality – what is common to all

2.Union of functionality – capabilities of all systems



3

Design Issue #7
Encapsulating Implementation Dependencies

Responsibility Operations

window management virtual void Redraw()

virtual void Raise()

virtual void Lower()

virtual void Maximize()

virtual void Minimize()

graphics virtual void DrawLine()

virutal void DrawRect()

virtual void DrawPolygon()

Virtual void DrawText()

What functionalities will the abstract Window support?

1.Intersection of functionality – what is common to all

2.Union of functionality – capabilities of all systems
something in between



4

Design Issue #7
Encapsulating Implementation Dependencies



5

Design Issue #7
Encapsulating Implementation Dependencies

Implement Window hierarchy for different windowing 

platforms, KDE / OSX / Windows.



6

Design Issue #7
Encapsulating Implementation Dependencies

Shortcomings

- Maintenance cost due to class explosion

- Not possible to change the Window System after compiling

- What can we do?



7

Design Issue #7
Encapsulating Implementation Dependencies

Shortcomings

- Maintenance cost due to class explosion

- Not possible to change the Window System after compiling

- What can we do?

Encapsulate the concept that varies



8

Design Issue #7
Supporting Multiple Window Systems



9

Design Issue #7
Supporting Multiple Window Systems

• Meet the Bridge pattern to 

• Defines a uniform set of windowing abstractions (common 

interface)

• Clients deal only with Window abstractions, not with the impl.

• Configure window objects (possible at run-time as well!) to the 

window system we want simply by passing them the right window 

system-encapsulating object

» See AbstractFactory / FactoryMethod patterns

• Hide the individual implementations

• Window hierarchy is not polluted with implementation details

http://www.oodesign.com/bridge-pattern.html
http://www.oodesign.com/abstract-factory-pattern.html
http://www.oodesign.com/factory-method-pattern.html


10

Design Issue #7
Supporting Multiple Window Systems

• Bridge pattern is used up-front in a design to let abstractions 

and implementations vary independently. 

• On the other hand, but similar to Bridge, the Adapter

pattern is geared toward making unrelated classes work 

together. It is usually applied to systems after they're 

designed, during implementation phase.

• Exists 2 variants of Adapter pattern

– Class Adapter

– Object Adapter

http://www.oodesign.com/adapter-pattern.html

