
1

Design Issue #8
User Operations

• Many possible operations

– Document operations: create, open, save, print a document

– Editing operations: select, copy, cut, paste, undo, redo

– Formatting operations: text formatting, character formatting etc

– Miscellaneous operations: context sensitive help

• Different interfaces for these operations

– Different Look-and-Feel

– Different Windowing Systems

– Different Access Points (menu, shortcut key, context menu)

• Independence from the UI

– UI is a possible trigger, but not the only one;

– What is done should not depend on the UI

2

Design Issue #8
User Operations

• Other remarks:

– The operations are implemented in many different classes

– De-coupling: we want to access the functionality without

adding dependency between the UI classes (i.e. object that

issues the request) and all of the different classes involved (i.e.

object that will perform the request)

– We also want to support undo and redo for some functionality

3

Design Issue #8
User Operations

Team exercise: Design the system to handle user requests;

de-coupling from UI is key!

4

Design Issue #8
User Operations

• We need to encapsulate the request using the Command

Pattern

• Each MenuItem, ToolbarButton or KeyboardShortcut refers

to an appropriate command object

http://www.oodesign.com/command-pattern.html

5

Design Issue #8
User Operations

…and there is an entire hierarchy of specific commands, each

class (command) being in charge with a specific user

operation.

Naturally, the same command object will be pointed out (shared) by

different triggers, like menu items, toolbar buttons etc. Hence, no

matter what triggers an operation, the behavior is the same

(consistency).

6

Design Issue #8
User Operations

Team exercise:

• Modify your design using Command pattern

• Think how to add Undo / Redo functionality to your system

7

Design Issue #8
User Operations

• What about Undo? We add an Unexecute() method and
keep a command history…

• …and a Memento will keep the state the command requires
to undo (Unexecute) its effect.

UNDO REDO

http://www.oodesign.com/memento-pattern.html

8

Design Issue #8
User Operations

• Tips for designing an Undo/Redo system?

– Carefully choose what user operations are undo/redo-able; focus on the
most important ones (e.g. delete, formatting)

– Try to minimize the amount of data saved in each memento to avoid memory
exhaustion

– Decide upon undo buffer size: last action vs. limited N actions vs. unlimited
number of actions

– Display details about the Undo/Redo operation in UI

• change the menu item name to ‘Undo delete’, ‘Undo paragraph
formatting’ etc.

• display the last M names of actions from the Undo buffer

– Care must be taken to update the UI consequently

9

Design Issue #8
User Operations

Team exercise: Handling context-sensitive help

10

Design Issue #8
User Operations

• How to handle context-sensitive Help?

11

Design Issue #8
User Operations

• Chain of Responsibility pattern allows to handle a request by multiple

hadlers.

– Intent: Avoids coupling the sender of a request to its receiver by

giving more than one object a chance to handle the request.

http://www.oodesign.com/chain-of-responsibility-pattern.html

